

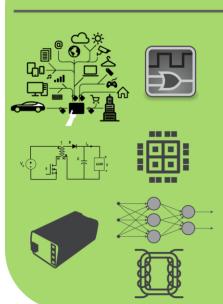
Aplicaciones del Hardware Evolutivo para el Diseño de Sistemas Ciberfísicos

Jornada sobre Sistemas Inteligentes

Jorge Portilla y Andrés Otero

Universidad Politécnica de Madrid

Centro de Electrónica Industrial (CEI)

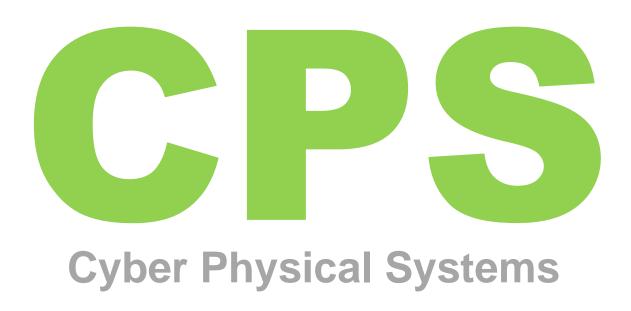


Centro de Electrónica Industrial (CEI)

- 46 investigadores a tiempo completo:
 - 16 Doctores (Personal Académico e investigadores contratados)
 - 30 estudiantes (18 Doctorado, 12 Master)
- 19 estudiantes a tiempo parcial
- 3 Administrativos y técnicos de soporte

Grupo de Electronica Industrial (GEI)

- 1. AC-DC and DC-DC power converters
- 2. Device modelling
- 3. Energy Harvesting
- 4. Smart Grids
- 5. Internet of Things and Wireless Sensor Networks
- 6. Reconfigurable FPGA-Based Systems
- 7. Embedded Intelligence
- 8. Neural Networks
- 9. Art and Technology


Power Electronics

Digital
Embedded
Systems

Un nuevo Paradigma

El término se refiere a una nueva generación de sistemas conectados híbridos, que cuentan con capacidades computacionales y de comunicación integradas de manera transparente con su entorno físico, al que controlan y/o monitorizan, y del que tratan de aprender.

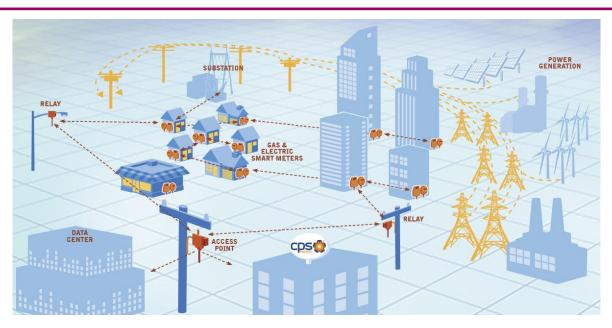
ALGUNOS ESCENARIOS DE APLICACIÓN DE LOS CPS

An Overview and Some Challenges in Cyber-Physical Systems

Kyoung-Dae Kim and P. R. Kumar

Sistemas de Transporte Inteligentes Effetentes, Seguros y de Alta Capacidad

Investigación sobre vehículos autónomos, intersecciones inteligentes, sistemas de comunicaciones inalámbricas para comunicaciones vehículo a vehículo (V2V) y vehículo a infraestructura (V2i)...



Generación y Distribución Eléctrica

Fiable, Efficiente, respetuosa con el medio ambiente y barata

Investigación sobre *Smart Grids* de energía eléctrica, toma de medidas distribuidas, monitorización y control simultáneos de la generación y el consumo de potencia, predicción de la demanda y la capacidad de generación, optimización de la distribución, detección de fallos y recuperación ante los mismos...

Edificios y Ciudades no contaminantes

Reducir el consume de energias fósiles a la vez que se satisfacen las demandas globales de energia

Investigación sobre sistemas conscientes de su propio consumo, contadores inteligentes, comunicación en tiempo real entre el productor y el consumidor...

Sistemas médicos inteligentes y fiables

Servicios sanitarios más seguro, eficientes y efectivos, Incluso a domicilio

Investigación en sensores inteligentes para la monitorización del paciente en tiempo real, sistemas de alerta para telemedicina que permiten ofrecer servicios sanitarios de manera remota, robots de atención a domicilio, equipamiento médico complejos interconectado...

Retos en el Diseño de Sistemas Ciberfísicos

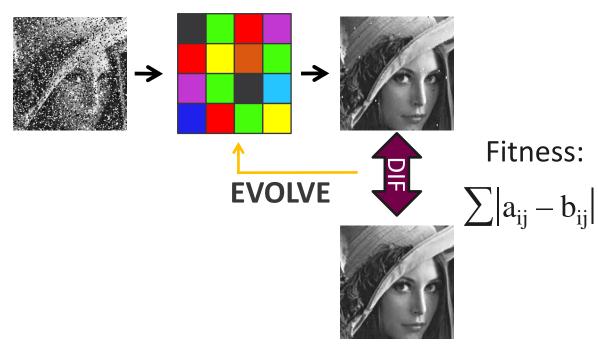
¡Retos y Tecnologías Claves!

• Robustos, Tolerantes a Fallos, Fiables y Seguros (Safety, Security)

Supone un reto por la extrema interacción entre el entorno físico, las comunicaciones,
la toma de medidas y la computación.

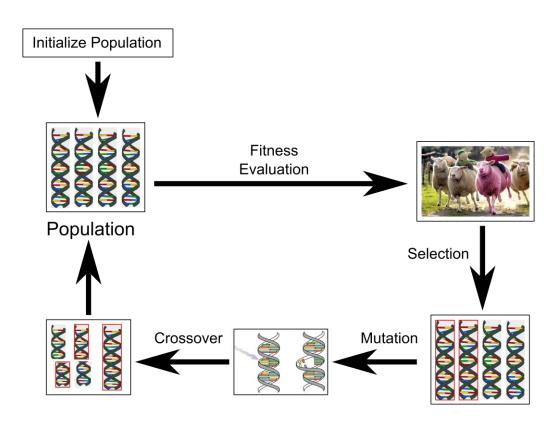
- Autonomía, Capacidad de Adaptación y Aprendizaje Automático ante un entorno físico cambiante:
 - Sistemas que se Adaptan Autónomamente (Self-Adaptive)
 - Sistemas que se Reparan Autónomamente (Self-healing)
 - Sistemas Conscientes de su Propio Estado (Self-Aware)

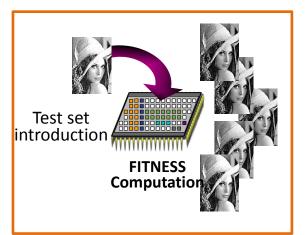
SISTEMAS SELF-*


¿QUE ES EL HARDWARE EVOLUTIVO?

Computación Evolutiva

- Se trata de una técnica de Optimización para la Resolución de Problemas
- Inspirada por la teoría de la evolución, asume que generaciones sucesivas mejorarán su comportamiento, teniendo como objetivo la optimización de una función de coste (fitness function).
- Se trata de resolver un problema cuyo modelo es desconocido e intenta encontrar una solución para el modelo, dada una REFERENCIA (salida deseada) y una entrada de ENTRENAMIENTO.

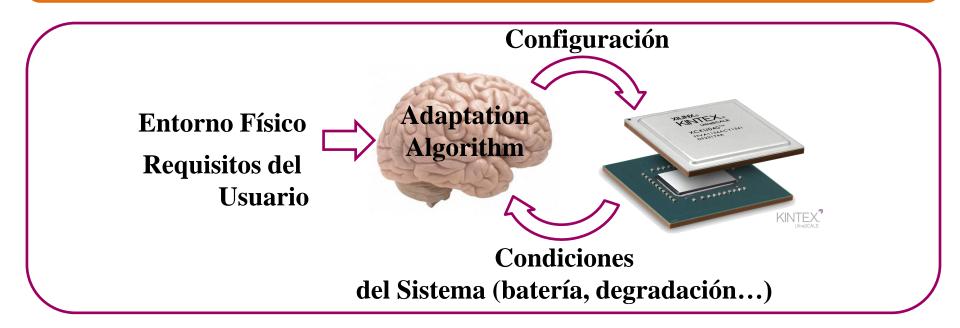




Hardware Evolutivo

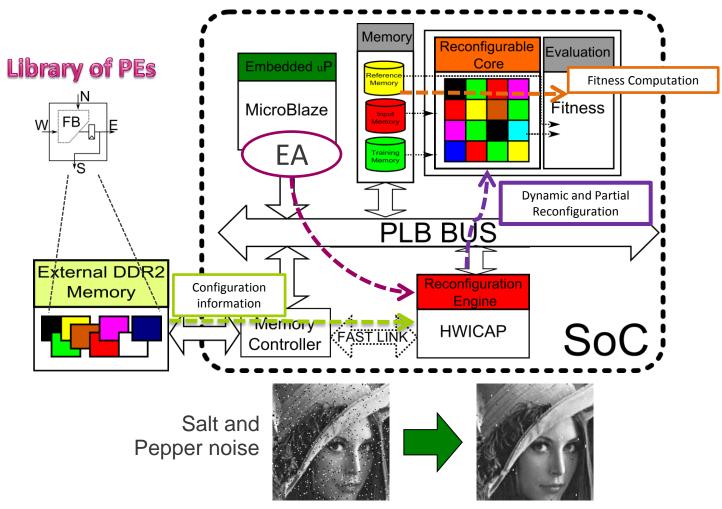
El hardware evolutivo se refiere al diseño de circuitos electrónicos aplicando

técnicas de Computación Evolutiva.


¿CÓMO PUEDE APLICARSE EL HARDWARE EVOLUTIVO EN EL ÁMBITO DE LOS CPS?

Adaptación Autónoma mediante EH

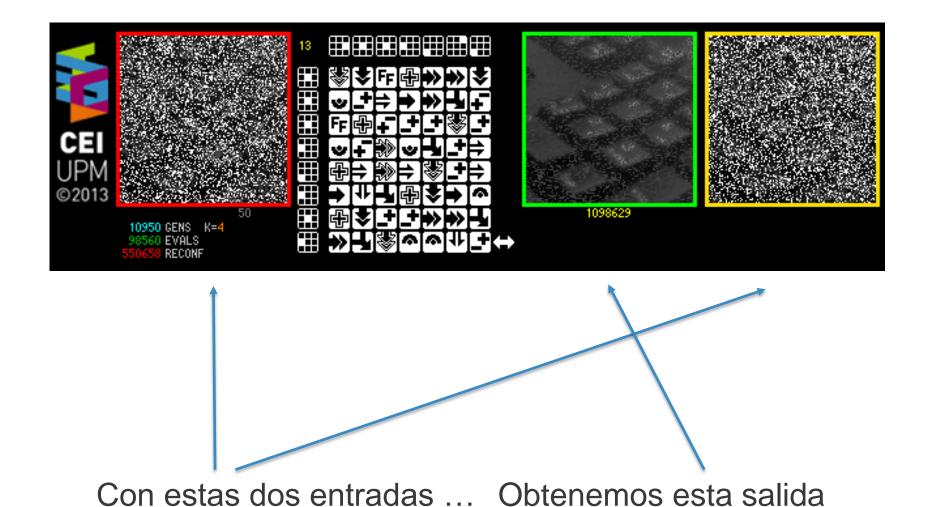
Los circuitos obtenidos mediante Hardware Evolutivo tiene la capacidad de modificar su arquitectura de manera **autónoma** y **dinámica**.

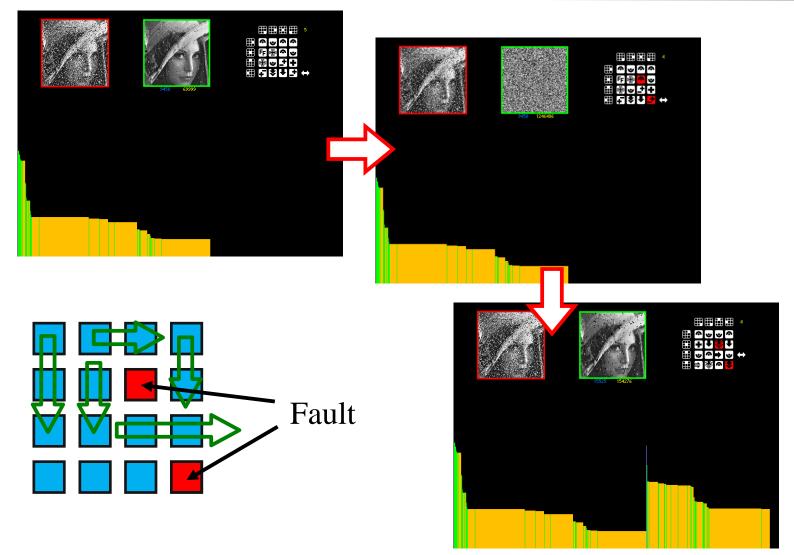


Esta autonomía y capacidad de adaptación viene dada por el uso de algoritmos de optimización evolutivos, que se basan en los mecanismos propios de la selección natural.

Arquitectura de un SoPC evolutivo




El aprendizaje debe ser adaptativo y generalizable

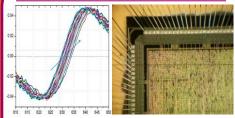

Puede funcionar hasta altísimos niveles de ruido!

Hardware Evolutivo – Tolerancia a fallos

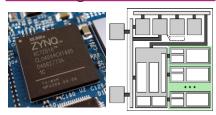
¿QUÉ MÁS HACEMOS EN EL CENTRO DE ELECTRÓNICA INDUSTRIAL?

Sistemas Embebidos en el CEI

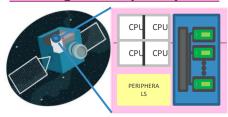
Wireless Sensor Networks


Wireless distributed systems applied to several scenarios such as smart traffic management, energy metering, agricultural control, urban participatory

Internet of Things


Networked embedded systems to face challenges related to the era of smart and sustainable cities, comprising the integration of heterogeneous hardware and software technologies.

Smart sensor interfaces


Embedded circuits for advanced interfaces of complex sensors, based on HW/SW embedded signal processing and machine learning techniques

Reconfigurable Hardware


Developing embedded parallel computing platforms based on HW acceleration, to obtain energy-efficient, scalable, and runtime adaptive solutions.

Heterogeneous Space System

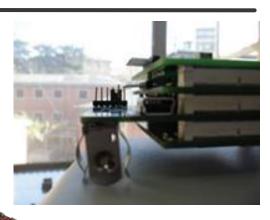
Systems that, at runtime and dynamically, adapt themselves to a variety of computing fabrics with particular attention in hardening to make them survive in harsh conditions.

Evolvable Hardware

Digital circuits that evolve adapting to a task, resulting in autonomous, self-adaptive, and self-healing hardware suited for hostile environments such as space applications.

Redes de Sensores Inalámbricas

- Línea de Investigación basada principalmente en HW
- Nodo Modular: Cookie
- Arquitectura Orientada al Prototipado
- Permite diseñar cada una de sus capas por separado:
 - Procesmiento
 - Comunicaciones
 - Sensores (o actuadores)
 - Fuente de Alimentación

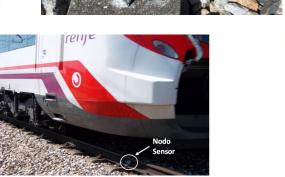


Redes de Sensores Inalámbricas

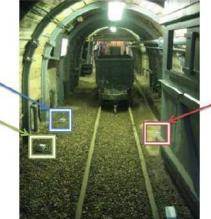
- Casos de uso muy variados:
- Pueden estar orientados a...
 - ...Bajo consumo y Baja tasa de transmisión
 - Bluetooth
 - ZigBee
 - uC de 8-bit con baja capacidad computacional
 - 8051
 - TI MSP430
 - FPGAs de bajo coste
 - Xilinx Spartan 3
 - Actel Igloo
 - ...Alto Rendimiento / Alta tasa de transmisión
 - Xilinx Spartan 6 FPGA
 - Wi-Fi (low power)

Redes de Sensores Inalámbricas: Aplicaciones

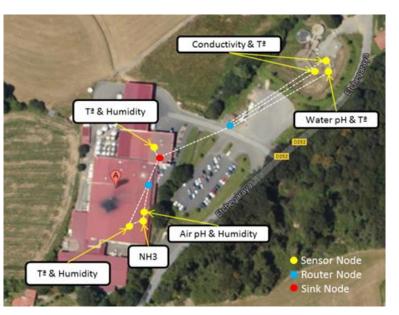
Safety: Prevención de Accidentes


- Túneles en Construcción
- Minas

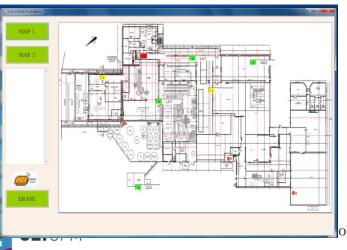
Nodos router

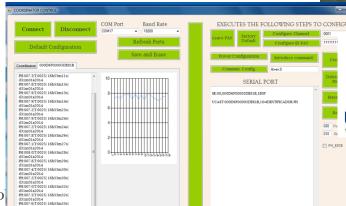

Vías Ferroviarias

Aceleración Eje Y


Aceleración Eje X

502


Redes de Sensores Inalámbricas: Aplicaciones


GIST: control medioambiental en instalaciones industriales

Algunos Proyectos sobre CPS en el CEI

- Hardened for Space
- Safe Reconfiguration
- Scrubbing Techniques
- CPS V&V and Predictability
- Hyperspectral Image Compression
- Autonomous Satellite Navigation

- Dataflow Extension
- Complete Toolset
- Full Adaptation
- CPSs & CPSoSs
- Robotic Arm for Space
 Rover

- Secure connected trustable things
- Virtual train coupling
- On track and on board WSN for monitoring
- Warning system for critical areas
- Energy harvesting for WSN nodes

Muchas Gracias por su Atención

Universidad Politécnica de Madrid

